4 resultados para VIRULENCE

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E. coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E. coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pine wilt disease (PWD) is one of the most damaging events affecting conifer forests (in particular Pinus spp.), in the Far East (Japan, China and Korea), North America (USA and Canada) and, more recently, in the European Union (Portugal). In Japan it became catastrophic, damaging native pine species (Pinus thunbergii and P. densiflora), and becoming the main forest problem, forcing some areas to be totally replaced by other tree species. The pine wilt nematode (PWN) Bursaphelenchus xylophilus, endemic, with minor damage, to North America, was introduced in Japan in the early XX century and then spread to Asia (China and Korea) in the 1980s. In 1999 it was detected for the first time in Portugal, where, due to timely detection and immediate government action, it was initially (1999-2008) contained to a small area 30 km SE of Lisbon. In 2008, the PWN spread again to central Portugal, the entire country now being classified as “affected area”. Being an A1 quarantine pest, the EU acted to avoid further PWN spreading and to eradicate it, by actions including financial support for surveyes and eradication, annual inspections and research programs. Experience from control actions in Japan included aerial spraying of insecticides to control the insect vector (the Cerambycid beetle Monochamus alternatus), injection of nematicides to the trunk of infected trees, slashing and burning of large areas out of control, beetle traps, biological control and tree breeding programs. These actions allowed some positive results, but also unsuccessful cases due to the PWN spread and virulence. Other Asian countries also followed similar strategies, but the nematode is still spreading in many regions. In Portugal, despite lower damage than Asia, PWD is still significant with high losses to the forestry industry. New ways of containing PWD include preventing movement of contaminated wood, cutting symptomatic trees and monitoring. Despite a national and EU legislative body, no successful strategy to control and eventually eradicate the nematode and the disease will prevail without sound scientific studies regarding the nematode and vector(s) bioecology and genetics, the ecology and ecophysiology of the pine tree species, P. pinaster and P. pinea , as well as the genomics and proteomics of pathogenicity (resistance/ susceptibility).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho teve como objectivo o estudo da prevalência de mastites ovinas em explorações do Alentejo e a identificação dos agentes etiológicos, seus factores de virulência e epitopos imunorrelevantes. A prevalência de mastite clínica e subclínica foi 1,7% e 32,2%, respectivamente. O agente etiológico mais prevalente foi Staphylococcus epidermidis (N=115), tendo sido também identificados Staphylococcus aureus (N=27) e Streptococcus agalactiae (N=17). A pesquisa de factores de virulência permitiu identificar os padrões de susceptibilidade (N=404) e as Concentrações Inibitórias Mínimas de princípios activos (N=130). De 109 isolados de Staphylococcus epidermidis; oito revelaram capacidade para produzir biofilme in vitro. Os isolados estudados aderiam e eram internalizados por células epiteliais mamárias (N=12). A pesquisa de cinco superantigénios resultou negativa (N=27). Foram estudados os perfis proteicos de Staphylococcus epidermidis, tendo sido identificados os epitopos imunorrelevantes, reconhecidos por imunoglobulinas séricas e mamárias. Verificou-se uma resposta imunológica local específica nos animais infectados./SUMMARY - OVINE MASTITIS: EPIDEMIOLOGY, VIRULENCE FACTORS AND IMMUNORELEVANT ANTIGENES OF AETIOLOGICAL MICRORGANISMS The present work aimed at investigating the prevaleance of ovine mastitis in farms from Aletenjo and the identification of causative microrganisms, their virulence factors and immunorelevant epitopes. The preva lence of clinical and subclinical mastitis was 1.7% and 32.2%,respect ively. The most preva lent aet iologica l agent was Staphylococcus epidermidis (N=115); Staphylococcus aureus (N=27) and Streptococcus agalactiae (N=17) were also identified. The investigation of virulence factors allowed the identification of susceptibility patterns (N=404) and drug Minimal Inhibitory Concentrations (N=130). From 109 Staphylococcus epidermidis isolates; eight showed the ability to produce biofilm in vitro. The isolates studied adhered and were internalised by mammary epithelial cells (N=12). None of the five superantigens studied was detected (N=27). The protein profile of Staphylococcus epidermidis was determined, and the immunorelevant epitopes, recognised by blood and milk immunoglobulins, were identified. It was possible to detect a specific local immune response in infected animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to contribute to determine the resistance profile to different antibiotics (ampicillin, gentamicin, penicillin G, oxytetracycline, lincomycin, neomycin, streptomycin, enrofloxacin, colistin sulfate, trimethoprim, sulfamide, tulathromycin, ceftiofur, amoxicillin/clavulanic acid), to assess genetic determinants associated to aminoglycoside antibiotics resistance, namely the presence of genes encoding acetyltransferases (AAC), phosphotransferases (APH) and nucletildiltranferases (ANT), determined by PCR studies, and to search for potentially pathogenic features as the production of extracellular lipases and proteases and the presence of genes encoding for putative virulence factors as aerolysin and related toxins, lipase proteins and type III secretion system component.